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Abstract The family of Doublesex-Mab-3 Related Tran-
scription factors (DMRTs) includes key regulators of sexual
differentiation and neurogenesis. To help understand the func-
tional diversification of this gene family, we examined DMRT
gene complements from the whole genome sequences and
predicted gene models of 32 animal species representing 12
different phyla and from several non-metazoan outgroups.
DMRTs are present in all animals except the sponge
Amphimedon queenslandica, but are not found in any of the
outgroups, indicating that this gene family is specific to ani-
mals and has an ancient pre-eumetazoan origin. Our analyses
suggest that DMRT genes diversified independently in
bilaterian and non-bilaterian animals. Most clades in the
DMRT gene tree, including those containing the well-
characterized DMRT1 and doublesex genes, have phylogenet-
ically limited distributions.
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Introduction

Sexually dimorphic phenotypes are present in nearly all ani-
mals. Among the wide variety of genetic machinery respon-
sible for the development of sex-specific traits, Doublesex-
Mab-3 Related Transcription factors (DMRTs) are unique for
their conservation in disparate animal phyla (Raymond et al.
1999; Volff et al. 2003). Most animal genomes contain mul-
tiple DMRT genes with different functions and expression
patterns. Various subsets of this gene family have been exam-
ined in vertebrates, nematodes, arthropods, mollusks, cnidar-
ians, and tunicates (Raymond et al. 1999; Mason et al. 2008;
Burtis and Baker 1989; Yu et al. 2011; Miller et al. 2003;
Tresser et al. 2010).

As regulators of sex-specific cell fates, DMRT genes
have varied roles. One of the best studied members of
the gene family—the insect doublesex gene—is required
for both male and female development and is present in
alternative splicing isoforms in the two sexes. Each
isoform binds to the same recognition sequence but
has sex-specific effects on transcriptional regulation
(Coschigano and Wensink 1993). doublesex acts at the
bottom of the sex determination pathway, but other
DMRT genes, such as the male-specific DMY in meda-
ka, are primary sex determiners (Matsuda et al. 2007).
Some DMRT genes, such as DMRT1 in mice, are
necessary only at specific developmental time points,
while others must be expressed constitutively through-
out adulthood to maintain sexual identity (Matson et al.
2011).

While most studies of DMRT gene function focus on
the roles played by these transcription factors in sexual
differentiation, these genes have also been shown to be
essential for processes as varied as Xenopus laevis olfac-
tory placode neurogenesis (Parlier et al. 2013) and
zebrafish somite formation (Meng et al. 1999).
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Interpretation of the similarities and differences in DMRT
expression and function across animal lineages is complicated
by the lack of a comprehensive phylogeny of the gene family.
DMRT gene sequences are highly diverged, with detectable
homology limited to the DNA-binding DM domain (Volff
et al. 2003). The short length of this region (~70 amino acids)
presents significant difficulty in resolving phylogenetic
relationships among DMRT paralogs, and poor resolution
of deep nodes in the DMRT tree has undermined our
ability to infer the ancestral developmental function of
this gene family.

Here, we use 33 genomes representing 12 phyla to examine
the evolution of the DMRT gene family and to establish a
phylogenetic framework for the ongoing analysis of the de-
velopmental functions of DMRT genes in different lineages.
Our analysis shows that although this gene family evolved
before the common ancestor of all eumetazoans, most DMRT
paralogs, including the best studied ones, have restricted phy-
logenetic distribution.

Materials and methods

Dataset assembly

Our DMRT dataset was assembled using an in-house bioin-
formatics pipeline. First, amino acid sequences of the DM
domains of nine well-characterized vertebrate and insect
DMRT genes (Table S1) were used as queries in BLASTp
(Altschul et al. 1997) searches of predicted gene models from
whole genome sequences of 33 phylogenetically informative
taxa (Table S2). BLAST searches were conducted with an
Expect value of 0.01, and the 20 highest scoring sequences
were retained from each taxon’s gene model. Redundant
sequences from the combined datasets were removed. BLAST
hits were also removed if they did not contain, upon initial
alignment, a canonical CCHHCC motif characteristic of the
DMRTDNA-binding domain (Zhu et al. 2000). Our complete
protein dataset is found in Supplemental Fig. 1. For each
phylogenetic analysis, full-length sequences were aligned
under the—auto setting in MAFFT (Katoh et al. 2002)
and low-scoring regions of the alignment were removed
using the automated1 heuristic implemented in trimAl

(Capella-Gutierrez et al. 2009). This approach maximizes
the alignable portion of the dataset, involves no hand
manipulations of the data and is reproducible. Alignments
used are found in Supplemental Figs. 2 and 3.

Phylogenetic analyses

We conducted phylogenetic analyses using both maximum
likelihood (ML) and Bayesian Monte Carlo Markov Chain
(BMCMC) approaches. ML analyses were conducted in
RAxML v7.2.8 (Stamatakis 2006) under the best-fit model
determined using ProtTest3 (Abascal et al. 2005) (Table 1). In
preliminary ML analyses, we noticed that the starting tree had
an appreciable effect on the resultingML topology. In order to
better circumscribe theML topology for animal DMRT genes,
we conducted 100 random starts of the data matrix and select-
ed the highest scoring topology as the best-known likelihood
tree (BKL) as described in the RAxML documentation
(Stamatakis 2006). We used the BKL tree to summarize the
bipartitions from (1) all 100 random start ML trees, (2) 1000
bootstrap (BS) replicates, and (3) posterior proportions
from BMCMC, resulting in the consensus BKL tree
(Figs. 1 and 2). Bootstrap (BS) replicates were conducted
under the best-fit model in RaxML (Stamatakis 2006).
BMCMC analyses were run for 30,000,000 generations
under the mixed amino acid model and default parameters
in MrBayes 3.2 (Ronquist et al. 2012). Our total metazoan
DMRT dataset included several loci on long branches (see
below). For analyses of a pruned dataset (Fig. 2), branch
length statistics were estimated using in-house python
scripts. Table 1 summarizes all phylogenetic analyses
conducted. Scripts used in the production of our datasets
are available upon request.

We were unable to identify a likely outgroup with which to
root phylogenetic analyses. DMRT genes bear no obvious
informative homology to other zinc finger transcription factor
DNA-binding domains, most of which bindDNA in the major
groove, whereas the DM domain binds in the minor grove
(Zhu et al. 2000). Phylogenetic results were midpoint-rooted.
Using the BKL trees (Figs. S4, S5, and S6), we assigned
orthology classes based on named, previously characterized
DMRT loci that were used as queries in dataset construction
(bold in Figs. 1 and 2).

Table 1 Summary of
phylogenetic analyses Dataset Matrix length

(amino acids)
# of genes
in dataset

Model Standard deviation of split
frequencies after 3×107

generations (BMCMC)

Total DMRT (Fig. 1) 50 151 JTT+G 0.015944

Reduced DMRT (Fig. 2) 46 91 JTT+G 0.008122

Arthropod and vertebrate DMRT (S8) 242 67 WAG+G 0.002725
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Results and discussion

Metazoan DMRT phylogeny

Alignable regions of homology in DMRT sequences localize
to the DNA-binding DM domain. Phylogenetic analysis of
this dataset presents considerable challenges, which derive
from the short alignment and from the presence of several
probable long-branch loci. Given these inherent challenges,
our approach was to first identify sequences that were likely
responsible for statistical errors in our analyses, and then
reanalyze the data following their removal. Our initial phylo-
genetic analysis included the total metazoan DMRT dataset and
included 151 sequences from 30 taxa. This dataset consisted of
a matrix of 50 residues after alignment and trimming. Results
from consensus BKL (Stamatakis 2006) (Fig. S4), bootstrap
(BS) (Fig. S7), and Bayesian MCMC (BMCMC) (Fig. S8)
analyses of this dataset showed poor resolution. Phylogenetic
results for this dataset are summarized in Fig. 1.

Our analysis of all gene models from all taxa yielded a
poorly supported group of long-branched sequences that
contained genes from multiple phyla including the well-
characterized Caenorhabditis elegans mab-3 and doublesex
genes from branchiopod crustaceans of the genus Daphnia.
The placement of Daphnia sequences differed from previous
analyses that used smaller taxon samples (Toyota et al. 2013;
Kato et al. 2011) with longer amino acid alignments. To
investigate potential problems of our dataset, we combined
arthropod and vertebrate sequences from our data matrix with
the dataset reported in a recent study of pancrustacean DMRT
phylogeny (Toyota et al. 2013). This dataset consisted of 67
genes with a matrix length of 242 residues. BKL, BMCMC,
and BS analyses resolved a well-supported clade of arthropod
dsx genes that included the Daphnia and other crustacean
sequences (summarized in Fig. S9). Improved support for
the clades in this tree could be the result of removal of long-
branched taxa, longer amino acid alignments, or both.

In order to address the effect of poorly supported long
branching taxa in our pan-metazoan DMRT phylogeny, we
removed all sequences with branch lengths greater than 1.0
standard deviations from the mean branch length across the
tree. Results of BKL (Fig. S6), BS (Fig. S10) and BMCMC
(Fig. S11) analyses of this reduced dataset are summarized in
Fig. 2.

DMRT genes originated before the evolution of eumetazoans

We included gene models from seven non-bilaterian animals
in our analyses: Acropora millepora, Amphimedon
queenslandica, Hydra magnipapillata, Mnemiopsis leidyi,
Monosiga brevicollis, Nematostella vectensis, and Trichoplax
adhaerans. All of these organisms contained DMRT domains
in their genomes with the exception of the sponge

Amphimedon and the choanoflagellate Monosiga. In ad-
dition, tBLASTn analyses of other metazoan ougroups
showed that no DM domain sequences are present in
the choanoflagellate Salpingoeca rosetta, other single-celled
Opisthokonts (Sphaeroforma arctica and Capsaspora
owczarzaki), in any fungi including basal fungal lineages
(Allomyces macrogynus, Mortierella elongata, and
Spizellomyces punctatus), or non-opisthokont protists (e.g.,
Naegleria gruberi). The presence of DMRT genes in
Trichoplax and Mnemiopsis indicates that this gene family
arose early in metazoan diversification. Mnemiopsis, Hydra,
and Acropora, but not Trichoplax DMRT genes, contain
DMA domains, suggesting that this domain arose during the
interval between Trichoplax and eumetazoans.

Phylogenetic distribution of DMRT paralogs

The phylogeny constructed from our reduced dataset reveals
eight monophyletic groups containing previously named
DMRT genes (Fig. 2). Most clades for which we find strong
support have limited phylogenetic distribution (Fig. 3). Only
two ortholog groups, DMRT93B and DMRT2/11E, contain
sequences from deuterostomes, lophotrochozoans, and
ecdyzosoans (Fig. 3). DMRT2 appears to play a wide variety
of roles in diverse metazoan taxa. In vertebrates, DMRT2
functions in somitogenesis, and in zebrafish it also regulates
left-right axial patterning (Saude et al. 2005). A study in the
frog Rana rugosa found DMRT2 expression in the gonads of
developing tadpoles, but no sexual dimorphism in expression
levels was observed. In the oyster Pinctada martensii,
DMRT2 is expressed in developing male germ cells (Kim
et al. 2011). The only ecdysozoan data comes from the crus-
taceanDaphnia magna, where DMRT11E transcription in the
ovaries is higher than in testes (Kato et al. 2011). Much less is
known about DMRT93B. Its expression has only been exam-
ined in the crustacean D. magna, where the levels of
DMRT93B transcript change in response to juvenile hormone
exposure (Kim et al. 2011).

The two DMRT paralogs with well-characterized roles in
sexual differentiation—DMRT1 and dsx—have mutually ex-
clusive phylogenetic distributions (Figs. 2 and 3). DMRT1
function is best studied in mice, where it is necessary for the
maintenance of male-specific gonad differentiation (Matson
et al. 2011). DMRT1 orthologs also function in male sexual
development in other mammals (including humans) birds,
amphibians, and teleost fishes (Kopp 2012; Zarkower 2013).
Our analysis shows strong support for a DMRT1 clade con-
taining only vertebrate sequences (Fig. 2). DMRT1 orthologs
are found in all examined Osteichthyes (bony fish and tetra-
pods), but not in the genomes of the sharkCallorhinchus milii,
the urochordatesCiona intestinalis andOikopleura dioica, the
cephalochordate Branchiostoma floridae, or in any non-
chordate deuterostome phyla.
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dsx, which directs male and female development via alterna-
tively spliced sex-specific isoforms inDrosophila melanogaster
and other holometabolous insects, only has clear orthologs in
arthropods (Fig. 3) (Kopp 2012; Zarkower 2013).

None of the DMRT genes from non-bilaterian animals
fall out in any of the supported bilaterian DMRT clades
(Figs. 1 and 2). However, several cnidarian DMRT genes
are recovered as outgroups to bilaterian lineages, e.g., the
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pan-bilaterian DMRT2/11E clade. In the restricted dataset
that excludes longer branching tips, most non-bilaterian

genes cluster together at the base of the tree (Fig. 2),
suggesting that DMRT genes diversified independently
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in bilaterian and non-bilaterian animals. Functional anal-
ysis of these genes will be essential for reconstructing the
diversification of the DMRT gene family, especially for
understanding the origin of its roles in sexual differentia-
tion and neurogenesis.

The domain structure of metazoan DMRTs

Our total DMRT dataset represents the complete complement
of DM domain-containing genes for each of the taxa included
in this study. These data allow the characterization of other

protein domains present in DMRT genes, which can shed
further light on the molecular function of these genes.
The DMA domain, found in several previously de-
scribed DMRT genes, is present in a wide range of
metazoan phyla, including cnidarians and ctenophores.
There is little phylogenetic signal to the presence of the
DMA domain, although it appears that none of the
doublesex orthologs possess a DMA domain. Functional
data on the DMA domain is limited to one study in
Xenopus which implicated the domain in neurological
processes (Parlier et al. 2013).

Fig. 3 Metazoan phylogeny
indicating the presence (dark
gray) or absence (light gray) of
DMRT paralogs. A paralog group
is defined as a monophyletic
group containing at least three
genes
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Conclusion

This phylogenomic analysis provides a framework for exper-
imental research aimed at understanding the function of
DMRT genes, including the ancestral role of this gene family
and the origin its functions in sexual differentiation. By pre-
senting a full paralog complement of DMRT genes from
multiple phyla, we also raise several new questions. For
example, what roles do DMRT93B and DMRT2/11E—the
only paralogs with broad phylogenetic distribution—play in
different taxa? Lastly, we hope that these gene trees will help
place current DMRT research in proper phylogenomic
context.
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